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A polymer chain under good solvent condition near a short-range attractive impenetrable wall (zy
plane) is investigated by dynamic Monte Carlo simulation using the bond-fluctuation model. For
the statics, the adsorption transition is clearly observed and the adsorption transition temperature,
T, for this model is determined. Chain conformation, segment orientation, fraction of segment
adsorbed, chain dimensions, and layer thickness as a function of temperature and distance away from
the wall are studied and discussed. Our results for the scaling behavior of the radii of gyration and
fraction of segment adsorbed confirm previous analytical theories and static simulation results. We
also obtain an estimate for the critical exponent which is consistent with previous static simulations
of self-avoiding walks. Furthermore, our data on specific heat show another peak, apart from the
one at T,, at a temperature 7> distinctively below T,, suggesting a second transition. As for the
dynamics, both the time autocorrelation function and the time dependence of the mean square
displacement of the center of mass of the chain are studied. We find that the time autocorrelation
function in the adsorbed state can be fitted to a stretched exponential form and the relaxation time
starts to diverge for temperatures below T2. The diffusion coeflicients for motions parallel (D.) and
perpendicular(D ) to the z axis are also extracted. D, shows a sharp drop as the temperature is
lowered below the adsorption transition temperature while D remains constant until around T
at which it decreases abruptly. Furthermore we also observe that the lateral diffusion (D) crosses
over from a Rouse behavior (D, ~ N _1) to a D, ~ N~2 behavior for temperatures below T5.
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These results are discussed in terms of the appropriate scaling theories.

PACS number(s): 64.70.Pf, 68.35.Rh, 68.45.—v

I. INTRODUCTION

Among the vast field of polymer science, the properties
of polymers near a surface or interface is of most current
interest, mainly due to the fact that presence of poly-
meric materials can drastically modify the surface and
interfacial properties in a more or less controlled fash-
ion. In particular, the properties of long flexible polymer
chains near an impenetrable attractive surface has drawn
considerable interests both theoretically [1-17] and ex-
perimentally [18-23]. Surface coated with polymers also
has important applications in industrial and biological
technologies such as stabilization of colloidal suspension,
wetting, chromatography, adhesion, biomaterial compat-
ibility, interaction with membranes, etc. The absorption
phase transition and the static properties of a single poly-
mer chain have been quite well studied [1-7] using field
theoretical method and static Monte Carlo simulation
[4,5], and various scaling laws and exponents were found
near the absorption transition. Exploiting the relation of
polymer statistics with the n-vector model of magnetism
(n — 0) [24], it has been demonstrated [4] that poly-
mer near an adsorbing surface can be described in an
analogous way as the critical behavior of magnets with
a free surface. Crossover scaling functions for a single
chain near the transition temperature, T,, have been for-
mulated and verified by static Monte Carlo simulation
of self-avoiding walks [4] on diamond lattices. The theo-
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retical understanding is not as detailed as in the case of
many chains absorbed near a surface; previous analytic
[2,6,9] studies were mainly about the scaling properties
of the monomer concentration profile while simulations
[10-14] were mostly concerned with the segment distribu-
tion of polymer melt confined between two plates. On the
other hand, the situation for the dynamical behavior is
much less investigated. There has been some study, using
molecular dynamics simulation, to probe the microscopic
dynamics [15], i.e., local chain segment fast dynamics, of
chains near an absorbing wall, but the more interesting
information about the slow global dynamics [25] of the
entire chain is much less studied. And it is this slow
dynamics that is responsible for the macroscopic dynam-
ical properties like diffusion and layer depletion rate, etc.
The motion of a polymer chain is considerably slowed
down if the chain segments are attracted by a nearby
surface. This is a very common phenomenon encountered
in surfaces that are coated with polymers. The attrac-
tion between the surface and the monomers is essential
for the polymers to stay on the surface. How slowly the
polymers are moving (due to self-diffusion) depends on
the concentration, temperature (surface-monomer inter-
action energy), and chain lengths. If there are hydro-
dynamic effects like shear solvent flow, things get more
complicated. This problem is of obvious importance in
technology and adhesion industry. Analytic theories of-
ten involve assumptions and/or approximations and their
predictions often cannot be directly tested by the exper-
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imental data. At this stage, computer simulations can
provide detail and very valuable information both to the
analytical picture and the experimental studies.

As a first step to understand the dynamics and struc-
ture of adsorbed chains, in this study we perform dy-
namical Monte Carlo (MC) simulation of a single chain
in a good solvent near an adsorbing wall using the bond-
fluctuation model. Although the static behavior of the
adsorption of a single chain is quite clear, it is still of in-
terest to confirm previous scaling and simulation results
using an entirely different model and verify explicitly the
universality of the adsorption transition. In addition,
contrary to the previous static MC simulations of a sin-
gle chain [4], our study can probe dynamical quantities
such as relaxation times, self-diffusion in the lateral and
normal directions, etc. Section II gives some details of
the bond-fluctuation model and the simulation method.
Section III concerns the results for the static. Results on
the dynamical properties are presented in Sec. IV and
finally some discussions and outlook are given in Sec. V.

II. THE BOND-FLUCTUATION MODEL AND
SOME SIMULATION DETAILS

The bond fluctuation model (BFM) for macromolec-
ular chain [28,29] is used in this simulation. BFM is
a lattice model in which each effective monomer occu-
pies a cube of eight sites in a simple cubic lattice. The
bond between successive monomers along a chain can
be taken from a set of 108 allowed bond vectors obtain-
able from the set {(2,0,0), (2,1,0), (2,1,1), (2,2,1), (3,0,0),
(3,1,0)} by symmetry operations of the cubic lattice. The
bond lengths can fluctuate between 2 and V10. Self-
avoiding interaction between monomers is enforced by
the requirement that no two monomers can share a com-
mon site. The Monte Carlo procedure starts by choos-
ing a monomer at random and attempt to move it one
lattice spacing in one of the six randomly selected di-
rections: *z, +y, +z. This trial move will be accepted
if the following three conditions are satisfied: (i) self-
avoidance is obeyed, (ii) the new bond vector still be-
longs to the allowed set, and (iii) the Boltzmann factor
exp(—AE/kgT) is greater than a random number be-
tween 0 and 1, where AF is the change in energy due to
the trial move, kp is the Boltzmann constant, and T is
the temperature. Henceforth kp is absorbed in our tem-
perature units. In the course of its motion, no two bonds
will ever intersect each other and hence the entanglement
effect is taken care of automatically. Because of its more
realistic and simple moves, this model is suitable for the
study of dynamical properties of polymers.

We consider a polymer chain consisting of N monomers
placed inside an L x L x H box where one L x L surface
(zy plane) is an adsorbing surface. Periodic boundary
conditions are chosen in the z and y directions while the
other two boundaries in the z directions are treated as
impenetrable walls. To model the adsorption process, we
introduce a short range attraction between the monomer
and the adsorption wall (the z = 1 plane) as follows:
there is a negative energy cost € < 0 (which is taken to be

—1) if the monomer lies on the adsorbing wall and there is
no interaction otherwise apart from self-avoidance. The
polymer chain can move anywhere inside the box. In
this study, the chain length ranges from N =40 to N =
100. As a linear dimension, we use L = 128 and H =
6N + 1. We verified that near the adsorption regime,
H is sufficiently large such that the plane at z = H has
no effect on the equilibrium properties of the system.
Starting from the high temperature, a polymer chain is
allowed to equilibrate for a long time (typically 5 to 10
times of the relaxation time) and statistical averages are
then taken for another extended period typically about
ten times the relaxation time. The last configuration of
the chain is used as the starting configuration for the next
run at a lower temperature. In this way, the system is
annealed down to low temperatures in which the chain is
well adsorbed on the wall. Static and dynamic quantities
are measured at different temperatures.

III. STATICS

The static behavior of the adsorption transition of a
single polymer chain has been quite well studied ana-
lytically [1-4,6]. Making use of the relation of polymer
statistics to the correlation function the n-vector model
of magnetism in the n — 0 limit [24], it has been demon-
strated [4] that polymer near an adsorbing surface can
be described in an analogous way as the critical behav-
ior of magnets with a free surface. Exponents describing
the power law behavior near the critical transition re-
gion and the crossover scaling functions for the radii of
gyration and adsorption energy have been obtained [4].
The values of the exponents and the associated scaling
functions have been verified by static Monte Carlo sim-
ulations of self-avoiding walks [4] on diamond lattices.
Here we present our dynamical MC simulation results
using bond-fluctuation model on a simple cubic lattice.
We obtain the adsorption transition temperature in the
BFM which may be relevant to other simulation studies
using this model. Furthermore, not only do we confirm
previous static simulation results, our result also gives an
independent estimate of the critical exponent and hence
confirms the universality of the adsorption transition.

A. Chain conformation

We measure the equilibrium properties for various
chain lengths and at different temperatures down to
T = 0.1. The polymer conformation can best be probed
directly by snapshot pictures as shown in Fig. 1 for three
different temperatures. At high temperature [Fig. 1(a)],
no monomer is adsorbed on the surface and the chain
behaves more or less the same as a random self-avoiding
coil in a good solvent in the bulk. At a lower temperature
(below the adsorption temperature T,), a finite fraction
of monomers are adsorbed on the wall while most of the
other monomers stay close to the first few layers forming
a kind of close packed layer structure in the z direction
as shown in Fig. 1(b). As the temperature is further re-
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FIG. 1. Snapshots of chain configurations at (a) T = 1.2,
(b) T = 0.6, and (c) T' = 0.1. Chain length N = 100.

duced, the chain lies flat on the adsorbing wall [Fig. 1(c)].
The chain is essentially frozen at this low temperature.
To explore the effect of chain dimensions and conforma-
tions in a more quantitative manner, we measure the par-
allel and perpendicular mean square radii of gyration of
the chain which are defined as

Rp.) = <N > (= zc.m)2> , 1)

(R _L) = <N Z{ —Tem)? + (v — yc.m.)2}> » (2)

(R3) = (R3.) + (R3L), ®3)
where (x;,y;, 2;) are the coordinates of the ith monomer
in a chain and (Tc.m.,Ye.m., 2c.m.) is the position of the
center of mass of the chain. The angular brackets () de-
note thermodynamic average. Figure 2 shows the radii
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FIG. 2. Radii of gyration as a function of 2..m. at (a)
T =1.2 and (b) T = 0.7. Chain length N = 100.
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of gyration as a function of the z coordinate of the center
of mass of the chain at two different temperatures. At
high temperature [Fig. 2(a)], when the chain is far away
from the wall, the chain is basically isotropic and hence
(R2,) =~ 3(R2,). When the chain is close to the wall,

(R2,) decreases while %(Rz | ) increases as compared to
its value in the bulk implying the chain deforms to a
pancake shape. At this high temperature, the wall is ba-
sically neutral as can be confirmed from the fact that the
radii of gyration have the same behavior also near the
z = H plane (not shown) and the chain can be found
in the entire box. This flattening of the chain near an
impenetrable wall is purely an entropic effect which has
also been observed in other simulation studies [26,27] us-
ing different models. Below T, [T' = 0.7 in Fig. 2(b)], the
chain stays close to the wall for most of the time and no
chain is found whose z.p, is greater than about a few
lattice spacing from the wall.

The orientation of the chain segments can best be mon-
itored by the angle @ between the z axis and the bonds.
A convenient quantity to distinguish the directions of the
bonds is

Py(cos§) = %(3 cos? 8 — 1), 4)

(P2(cos 8)) will take values —3, 0, and 1 for bonds that
are perpendicular, randomly oriented, and parallel to 2
direction. Figure 3 displays the orientation of the ith
bond along the chain, 6;, at various temperatures. At
high temperature, the segments are randomly oriented
as expected. As the temperature is lowered, (P,(cos6;))
becomes more negative indicating that the bonds spend
more time aligning parallel to the plane of the wall. No-
tice that near the chain ends, (P;(cos#;)) is larger, sug-
gesting end segments are freer. At very low temperature
(T = 0.2) (Py(cosf;)) = —3 for all i implying all the
segments lie flat on the wall due to the strong adhesion.
Another related quantity is the orientation of the chain
segment as a function of its position from the wall 8(z),
as shown in Fig. 4. At high temperature, chain segments
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FIG. 3. Average orientation of the ith bond. (Pz(cos6;))
versus ¢ at four different temperatures. N = 100.
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FIG. 4. Average orientation of the bonds as a function of
their distance from the wall. (P;(cos8(z))) versus z at three
different temperatures. N = 100.

are randomly oriented when they are far away (z > 5)
from the wall and tend to align parallel to the wall when
they are get closer to the wall. As the temperature is
lowered, the tendency for the segments close to the wall
to lie flat increases. These results are consistent with the
picture that the chain assumes a pancake shape when it
is close to the wall and the chain will spend more time
near the wall when the temperature is lowered.

B. Phase transitions

It has been quite well established [1-6] that the adsorp-
tion of a single polymer chain on a short range attrac-
tive surface undergoes a critical phase transition. Var-
ious scaling laws concerning the radii of gyration and
the fraction of adsorbed segments have been formulated
[4] and the corresponding exponents obtained by static
Monte Carlo simulations [4] on diamond lattices. Here
we shall report the static properties near the transition
point using dynamical Monte Carlo simulation of the
bond-fluctuation model. Following earlier studies [4], we
monitor the root-mean-square radii of gyration and the
average fraction of monomers adsorbed f,. In our model,
fa is exactly equal to the average energy per monomer.
Figure 5 displays the above quantities as a function of
temperature and it clearly shows a sharp transition oc-
curs at T ~ 0.9. Above the transition temperature, no
finite portion of the chain is adsorbed and the chain is
basically isotropic with (R;z ~ %(R; ). As the temper-
ature decreases below the transition point, f, increases
and saturates at f, = 1 at very low temperature indi-
cating the whole chain lies on the wall. The fact that
(R2,)'/? decreases while 3(RZ, )'/2 increases as T is low-
ered is consistent with the fact that the chain gets flat-
tened and attracted towards the wall. However, the over-
all dimension of the chain ((RZ)'/2 ) increases upon re-
ducing temperature below the transition point. At very
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FIG. 5. Scaled radii of gyration, fraction of segment ad-
sorbed as a function of temperature for chain of length
N = 80. v = 0.588.

low temperatures (T' < 0.2), (RZ,)!/2 ~ 1 again implying
the chain is lying flat on the wall.

For second order phase transitions, fluctuation quan-
tities like the specific heat should diverge near the tran-
sition temperature and for finite systems as in our sim-
ulation, a peak should appear. The specific heat C as
a function of temperature is shown in Fig. 6, the peak
around T, is clearly seen as expected, but in addition to
this, another peak appears at a temperature 75 ~ 0.2
which suggests another phase transition. In fact, the
data on (R2) (Fig. 5) also show a kink at T} indicating a
sharp change in the structure occurs. The transitions at
T, and T3 can also be revealed from our data on the av-
erage bond length (£2). The bond-fluctuation model has
the unique feature of variable segment lengths among the
lattice polymer models. The mean square bond length of-
ten reflects the state of the polymer system. As shown
in Fig. 7 (£2) stays almost constant for T above T, and
shows a kink and decreases below the critical point. The
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FIG. 6. Specific heat C as a function of temperature T" for

N = 80, 100.
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FIG. 7. Mean square bond length between successive
monomers {(£2) versus T for N = 70, 100.

fact (£2) decreases while (R2)'/2 increases as T is low-
ered implies that as the chain gets attracted to the wall,
it is compressed from an initially isotropic coil to a pan-
cake structure by uncoiling the chain segments. Below
T, (£2) stays roughly constant upon further cooling; this
suggests the polymer chain might be in a “frozen” state.
We shall discuss more about this aspect in the section
about dynamics.

C. Adsorption temperature and critical exponents

The transition temperature T, of the adsorption tran-
sition for the bond-fluctuation model can be obtained by
making use of the crossover scaling results by Eisenriegler
et al. [4],

(R2,) = N*f, (tN?), (5)
(R2) = N*[f,(tN?), (6)
fa = Nd)_lh‘(tNd))y (7)

where t = (T — T,)/T, and f,, f., and h are scaling
functions. v is the self-avoiding walk exponent in three
dimensions. The value of v is quite well established from
analytical results [30] and simulations [31], we shall take
v ~ 0.588. To determine T, for the present model, notice
that from Eq. (5), (R2,)/N?" is independent of N at
T = T,. Thus a plot of (Rgl)/Nz" versus T for various
chain lengths N will intersect at T,. Figure 8 shows such
a plot and indeed as T increases data for different values
of N merge together at some temperature and we obtain
T, ~ 0.92 &+ 0.06. From Eq. (7), fo < N¢ ! at T,
and thus our data can provide an independent estimate
for the exponent ¢. We perform extensive simulations
at T, = 0.92 and measure f, for different chain lengths
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FIG. 8. Scaled radius of gyration (R2,)/N? versus T for
different chain lengths, v = 0.588.

and the result is shown in Fig. 9. A simple fitting of
the data gives ¢ ~ 0.58 £ 0.15 which is in agreement
with earlier results using static Monte Carlo simulation
of self-avoiding walks on diamond lattices (¢ ~ 0.58 +
0.03) [4] and simple cubic lattices (¢ ~ 0.530 + 0.007)
[5]. However, the precision in dynamic Monte Carlo is
much lower and our result is unable to resolve the slight
discrepancy in the value of ¢ in Refs. [4] and [5]. With
v = 0.588 and ¢ = 0.58, scaling plots verifying the cross-
over scaling laws [Egs. (5)—(7)] are shown in Fig. 10.
The data collapse into a master curve except for some
systematic deviations for shorter chain lengths.

The quantity which is relevant to experiments and
technological applications is the layer thickness formed
by the adsorbed chain. This can be measured by the
center of mass position of the chain from the wall (z¢ m.)
of the adsorbed chain. Figure 11 is a plot of (zcm.)
versus |t| for chains of different lengths in the adsorbed
state (T' < T,). Our data indicate that the thickness
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FIG. 9. Log-log plot of f, versus N at T, = 0.92. Dashed
line is a best fit of the data which gives a slope of —0.42.
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of the adsorbed layer is essentially independent of N for
a given temperature and the thickness is roughly pro-
portional to |t|~!. This can be understood in terms

of the scaling law (6).

In the adsorbed state one has

f-(tN®) ~ |t|~2/¢N~=2¥ for |t|N® >> 1 [4] and hence
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FIG. 10. Scaling plots using v = 0.588 and ¢ = 0.58 for

different N and temperatures from (a) Eq. (5), (b) Eq. (6),
and (c) Eq. (7).
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and v/¢ = 0.588/0.58 ~ 1.

IV. DYNAMICS

Dynamic phenomena in adsorbed polymer are much
less understood. They are clearly of interest in under-
standing the dynamical response to such a layer un-
der external perturbations. To contribute towards a
basic understanding of the dynamical properties, we
have obtained information on the time autocorrelation
function, time dependence of mean square displacement
of monomers and the diffusion coefficients. Time is
measured in units of Monte Carlo steps per monomer
(MCS/monomer), one MCS/monomer means that on av-
erage every monomer has attempted to move once. Here
we will use the symbol ¢ for time; this should not be
confused with the reduced temperature in preceding sec-
tions.

A. Time autocorrelation function, relaxation time,
and glassy behavior

We measure the time autocorrelation function for the
radii of gyration Ry, R,., and Ry ; since the correlation
function of R, decays the slowest, we will concentrate
on it. Figure 12 shows the time autocorrelation function
C(t) for the radius of gyration Ry, defined as

) = Wl = (FU0) (R

at high and low temperatures. C(t) decays much slower
as T decreases. At temperatures above T,, C(t) can be
roughly fitted to an exponential decay, but at low tem-
peratures C(t) decays considerably slower than a sim-
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FIG. 12. Time autocorrelation function for the radius of
gyration as defined in Eq. (9) at T = 1.2 and T = 0.4 for
N = 100. t is in units of MCS/momoner. Solid and dashed
lines are the two parameter fits from Eq. (10) for data at
T = 1.2 and 0.4, respectively.

ple exponential decay. Instead C(t) can be fitted to a
stretched exponential of the form

C(t) = exp (- (¢/7)%), (10)

where 7 and a are fitting parameters. The quality of
the fittings are quite good with a x? of the order 10~2.
We found that a ~ 1 for temperatures above T, and for
T < Ty, a < 1 and keeps decreasing as T is lowered.
Also shown in Fig. 12 are the fitted functions, a ~ 0.96
for T =1.2 and a ~ 0.75 for T = 0.4. At very low tem-
peratures (~ 0.2), C(t) decays very slowly but a stretched
exponential form can still be fitted. The relaxation time,
7, can be calculated from the integral of C(t). Assuming
C(t) is of the stretched exponential form in (10), one gets

T:[)ooC(t)dt-—— Tr (é) (11)

Figure 13 shows the variation of 7 as a function of T
for different chain lengths. 7 remains roughly constant
for temperatures above 7, and starts to rise slowly for
T < T,. Around the same low temperature at which a
peak appears in the specific heat, T> &~ 0.2, 7 increases
drastically as temperature is further lowered. The ap-
parent divergence of 7 at very low temperature is often
related to some “glassy” behavior suggesting the chain
is basically frozen on the wall. A speculative suggestion
for a glass transition of adsorbed chains has also been
made by Kremer [32]. We attempt to fit the low tem-
perature relaxation time with the Vogel-Fulcher law [33]
that describes glass transitions:

) (12)

T = Too €XP (m

where 7o, is the high temperature relaxation time, Tyr
is Vogel-Fulcher temperature, and A is some parameter
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FIG. 13. The relaxation time 7 in units of MCS/monomer
versus T as defined in Eq. (11) for chains of various lengths.

which may be interpreted as a measure of the activation
energy. Figure 14 shows a plot of 1/In(7/74,) versus T for
N = 100. The data fall on a straight line for T < T con-
sistent with the Vogel-Fulcher behavior, with Ty ~ 0.09
and A ~ 0.12. It should be noted that a recent molecu-
lar dynamic study on oligomer films [16] also indicated a
glassy behavior on strongly absorbed surfaces.

The dependence of the relaxation time on chain length
N is also studied. At high temperatures in which the
effect of the attractive wall can be neglected, we expect
the chain should follow Rouse dynamics [25,34,35] with
the relaxation time scales as

T~ N2, (13)

This is indeed observed at high temperatures even up to
T,. Figure 15 is a plot of 7 versus N at 7' = 0.92 and 0.2;
the data at T = T, obey quite nicely the Rouse dynamics
(13). The relaxation times at T = 0.2 are longer, but
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FIG. 14. 1/In(7/Te) versus T for low temperature data
(T < 0.2). Chain length N = 100.
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FIG. 15. Log-log plot of 7 versus N at T = 0.92 and
T = 0.2. Uncertainties in 7 are about the size of the symbols.
Dotted line corresponds to a slope of 1 + 2v = 2.176.

surprisingly the data still seem to be consistent with the
Rouse dynamics. This will be further discussed in the
next section.

B. Mean-square displacements and diffusion
constants

To probe the dynamical behavior of the chain, we mea-
sure the time dependences of the mean-square displace-
ments of the center of mass of the chain in the direction
parallel to and perpendicular to z axis,

92 m. (1) = ((Zem. () — Zem.(0))?), (14)
em. (t) = ((Te.m.(t) = Te.m.(0)
+(yc.m.(t) - ycm(O))2> (15)

92 m.(t) [Fig. 16(a)] and 3¢, (t) [Fig. 16(b)] and at dif-
ferent temperatures are displayed. At high temperature,
9% m.(t) and gt (t)/2 are almost identical as expected,
furthermore both of them scale as ~ ¢ indicating free dif-
fusions in both directions. g7 (t) decreases with T for
T < T, implying the chain is being trapped by the attrac-
tive wall and is unable to diffuse away from it. On the
other hand, as T decreases g, (t) remains more or less
unaffected (with a very small decrease) for temperatures
down to T' ~ T,. Upon further lowering the temperature,
92 (t) ~ t holds only for early times, at intermediate
times (5000 < t < 100000), one can see a motion much
slower than free diffusion, and at larger times the ~ ¢
behavior is recovered.

From the analysis of the center of mass motion of the
chain in directions parallel to and perpendicular to the z
axis, we can obtain the diffusion constants in these two
directions, defined as

.1,
Dl - tl_l)uolo ﬂgc.m.(t)’ (16)
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1
D, = lim —gon (t)- (17)
The apparent diffusion coefficient decreases systemati-
cally with ¢ and high precision data are required to carry
out the extrapolation to ¢t — oo in Egs. (16) and (17).
The resulting data for D, and D, as a function of T are
shown in Fig. 17. D, ~ D, at high temperatures as ex-
pected. As T is lowered D, decreases abruptly at T ~ T,
and quickly drops to almost zero while D remains essen-
tially constant for temperatures down to about T,. For
temperatures below T3, D, starts to fall quite sharply to
small values. As in the data for the relaxation time, there
appears to be two temperatures at which the dynamics of
the system changes drastically. The first being the transi-
tion temperature T,, the second is at a lower temperature
around T3 ~ 0.2 below which the chain appears to be in
a kind of glassy or frozen state. We expect at high tem-
peratures, the dynamics for the single chain should obey
the Rouse model with D ~ N~!. This is indeed observed
for both D, and D, at high temperature. Even down to
T,, our data for D is still consistent with the Rouse be-
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FIG. 16. Mean square displacements (a) gZ . (¢) and (b)
i g m.(t) at various temperatures for chain of length N = 100
shown in a log-log plot. Dashed line denotes a slope of 1.
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FIG. 17. Diffusion coefficients parallel and perpendicular
to the z axis, D, and D, in units of (MCS/monomer)™!, as
a function of T for chain of length N = 100.

havior (Fig. 18). However, D, shows a strong deviation
from the Rouse behavior for T close to and below T,;
furthermore the variation of D, cannot be described by
a power law behavior at T,. The behavior of D, in the
fully adsorbed state is also shown in Fig. 18 (T' = 0.1), it
is consistent with the power law D, ~ N~2. A crossover
from the Rouse behavior (~ N71) to a ~ N~2 behavior
is observed for the lateral diffusion as T' decreases from
T, to even lower temperatures. It should be noted that a
similar behavior, with the mobility being proportional to
N~2, has been suggested [17] in diffusive adsorbed layers
by assuming a self-similar concentration profile.

V. DISCUSSIONS AND OUTLOOK

In this paper, the bond-fluctuation model is used to
simulate the static and dynamic behavior of adsorption
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FIG. 18. Log-log plot of D, and D versus N at T, = 0.92,
T = 0.2 and 0.1. Dotted and dashed lines denote a slope of
—1 and -2, respectively.
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of a polymer chain near an attractive wall. Varying the
chain length NV and the temperature T over a wide range,
we verified the predictions from analytical theories for the
static adsorption transition. In particular we obtained an
estimate for the exponent ¢ which is in agreement with
both previous MC simulations using static method on
different lattices [4,5]; unfortunately the precision in dy-
namical simulations is not sufficient to settle the slight
discrepancy between previous results. More interestingly,
at T, which is much lower than T,, we observed a struc-
tural change as revealed in the peak in specific heat (Fig.
6), the data on (R;) (Fig. 5), and the average bond length
(Fig. 7); this should be related to the glassy behavior as
observed in the dynamics.

For the dynamics, we found that the relaxation of the
chain is very slow at low temperatures with the time
autocorrelation function described by a stretched expo-
nential. Furthermore, at very low temperature T < T3,
the system shows a glassy behavior with the relaxation
time increasing drastically, which can be described by
the Volgel-Fulcher law. These results suggest that at this
very low temperature the chain is almost entirely stuck
to the wall and is trapped in some glassy state; it has to
overcome a huge activation energy barrier in order to re-
lax to another state. This slow relaxation may be due to
the fact that when the monomers are first adsorbed onto
the surface, the chain is probably not in its equilibrated
configuration in the adsorbed state and the chain has to
rearrange almost all of its monomers at the same time to
relax and this could cause a huge activation barrier. The
aging effect [23] observed in a recent experiment on the
kinetics of chain adsorption also indicated a very slow re-
arrangement of adsorbed chains towards conformational
equilibrium; this may share the same origin of the slow
dynamics in our results. The sharp drop of the diffusion
constant D, at T, which implies the chain being local-
ized by the attractive wall is somewhat expected. On
the other hand, the abrupt decrease of D, around T3 is
more interesting; it reflects the chain is in a glassy state.
Figure 18 indicates that D, crosses over from the Rouse
behavior (~ 1/N) to a ~ N~2 behavior at very low tem-
perature (< T3), suggesting that the lateral diffusion in
the fully adsorbed state (f, = 1 at this temperature) is
still very much different from a genuine two-dimensional
system where strictly Rouse behavior was found [29]. A
N~2 behavior for lateral diffusion suggested for dense ad-
sorbed layers by assuming some sort of reptation mecha-
nism in a self-similar concentration profile [17] may have
some relation to our result, but the connection is not
obvious.

We observed the expected Rouse behavior for the re-
laxation time [Eq. (13)] at high temperatures, but the
apparent consistency with the Rouse behavior even at
low temperatures (T' = 0.2, Fig. 18) is somewhat surpris-
ing. This behavior may be understood as follows: the
time needed for the polymer to diffuse a distance of the
order of the radius of gyration should be proportional to
the relaxation time, and thus 7 ~ (R_:“;) /D. At low tem-
peratures (T, < T < Ty), D = D, + D, ~ D, , and
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FIG. 19. Log-log plot of 7D, versus N at T = 0.4 and 0.2.
Dashed lines denote a slope of 1.5.

using the scaling laws (5), (6), one has 7 ~ [f. (tN?¢) +
f:(tN%)|N? /D, . From the asymptotic behavior [4] of
fi(x) ~ z2@2a=2)/% and f, ~ 272/% for |z| << 1 where
voq = 3/4 is the self-avoiding walk exponent in two di-
mensions, one arrives at

7D, ~aN?2¢ 4+ p (18)

for some constants a and b. Since D; ~ N1 still holds
for T > T,, one has 7 =~ aN?® 4+ bN and a naive fitting
of 7 as a power in NV will give an effective exponent close
to 1+ 2v ~ 2.18 and thus an apparent agreement with
the Rouse behavior. To check this, we plot in Fig. 19
7D, versus N in a log-log plot; one expects a straight
line with a slope of 2v54 = 1.5 results for large values of
N from (18). This is indeed the case.

Our results on both statics and dynamics revealed that
apart from the already known adsorption transition at
T,, there exists another transition at T,, possibly dy-
namical in origin, and the system transforms to a glassy
state. We hope that our work will stimulate more de-
tailed analytical work, especially for the dynamics, to
explain those features of our results where no detailed
theoretical explanation has yet existed. Also experiments
probing direct information on the dynamics of the chains
would be also very valuable. In future studies, we plan
to investigate the kinetics of adsorption and the effect of
shear flow; the structure and dynamics of adsorbed layer
formed many chains that are currently under investiga-
tion.
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